Кто должен определять угол наклона глиссады. Встреча с землей: как сажают самолёты

Автор: Дмитрий Просько Дата: 06.02.2005 23:20
Курсо-глиссадная система (в дальнейшем будем называть ее КГС , как это принято в России) является наиболее распространенной системой захода на посадку на крупных и оживленных аэродромах. Кроме того, она является наиболее точной, если конечно не считать MLS - Microwave Landing System, которая до сих пор не получила такого же широкого распространения. Сейчас мы попытаемся разобраться, как работает эта система и как научить ею пользоваться. Конечно, эта статья не претендует на наиболее полное и единственно верное руководство:), но в качестве учебного пособия на начальном этапе она вам очень поможет.

Состав и принцип работы КГС

Все, что мы видим на приборах при посадке - это 2 перекрещивающихся планки, обозначающие положение самолета относительно траектории захода на посадку. Давайте попытаемся понять, за счет чего они перемещаются, и почему пилотажно-навигационный комплекс самолета получает очень точную информацию о положении самолета.

Итак, из чего состоит КГС:

  1. Курсовой маяк, который обеспечивает наведение самолета в горизонтально плоскости - по курсу .
  2. Глиссадный маяк, обеспечивающий наведение в вертикальной плоскости - по глиссаде .
  3. Маркеры, сигнализирующие момент пролета определенных точек на траектории захода. Обычно маркеры устанавливаются на ДПРМ и БПРМ .
  4. Приемные устройства на борту самолета, обеспечивающие прием и обработку сигнала.

Курсовой и глиссадный маяки устанавливаются возле ВПП . Курсовой маяк - в противоположном торце ВПП по осевой линии, глиссадный маяк сбоку от ВПП на удалении точки приземления от порога ВПП .

Теперь о том, как работают эти маяки. Возьмем за основу курсовой маяк и несколько упрощенно рассмотрим его работу. При работе маяк формирует 2 разночастотных сигнала, которые схематично можно показать как 2 лепестка, направленные вдоль траектории захода на посадку.

В случае, если самолет находится точно на пересечении этих двух лепестков, мощность обоих сигналов одинакова, соответственно разность их мощностей равна нулю, и индикаторы прибора выдают 0. Мы на курсе. Если самолет отклонился влево или вправо, то один сигнал начинает преобладать над другим. И чем дальше от линии курса, тем больше это преобладание. В результате этого за счет разницы в мощности сигнала приемник самолета точно устанавливает, насколько далеко мы от линии курса.

Глиссадный маяк работает точно по такому же принципу, только в вертикальной плоскости.

Читаем показания приборов

Итак, мы вошли в зону действия КГС . Планки на ПНП отшкалили, значит пора нам сориентироваться, где мы находимся и как нам надо пилотировать самолет, чтобы точно вписаться в траекторию захода.

В зависимости от того, какой прибор у нас установлен, индикация может меняться, но основной принцип остается неизменным - планки (стрелки, индексы) показывают нам положение траектории захода относительно нашего места . На том приборе, что мы сейчас рассмотрим, наше положение относительно курса показывает вертикальная планка, а положение относительно глиссады - треугольный индекс в правой части прибора.

Сами планки как бы показывают нам, где именно находится наша траектория. Если курсовая планка слева, то линия курса тоже находится слева, а значит, нам надо довернуть влево. То же и по глиссаде - если глиссадный индекс внизу, то мы идем выше, и нам надо увеличить вертикальную скорость, чтобы "догнать" глиссаду.

Теперь давайте пройдемся по разным положениям самолета и посмотрим на индикацию прибора в положениях, указанных на общем рисунке.

1. Мы на линии курса и еще не подошли к точке входа в глиссаду. Все как положено - курсовая планка точно в центре, глиссадный индекс вверху. Линия глиссады проходит над нами и устремляется в никуда под углом в среднем 2 градуса 40 минут относительно горизонта. Кстати, угол наклона глиссады (УНГ) на разных аэродромах разный. Это зависит от рельефа местности и от других условий. К примеру, на горных аэродромах УНГ может составлять до 4-5 градусов.

2. Мы находимся в точке входа в глиссаду (ТВГ). Это точка, образованная пересечением глиссады с высотой круга. Средняя величина удаления ТВГ составляет примерно 12 км. Естественно, чем выше высота круга и чем меньше УНГ , тем дальше от порога ВПП находится ТВГ .

3. Мы находимся левее и выше. Надо довернуть вправо и увеличить скорость снижения.

4. Мы находимся левее и ниже. Приберем вертикальную и довернем вправо.

5. Мы находимся правее и выше. Довернем влево и увеличим вертикальную.

6. Мы правее и ниже. Догадайтесь, что нужно сделать:)

Ну в общем-то это все, что хотелось вам сообщить:)

Напоследок хочу сделать одно весьма важное дополнение.

Учтите, что чем ближе мы находимся к ВПП , тем меньше должны быть эволюции самолета, потому что прибор становится очень чувствительным. К примеру, если мы находимся на удалении 10 км от порога ВПП , положение курсовой планки на второй точке шкалы может означать боковое отклонение в 400 метров или более (это к примеру). Чтобы довернуть, нам понадобится изменить курс на 4-5 градусов или более. Если же мы находимся на удалении 2 км, то такое положение планки означает, что отклонения превысили предельно допустимые, и единственное, что нам остается, это уходить на второй круг. Чем ближе самолет к порогу ВПП , тем ближе к центру должна быть курсовая планка. В идеале конечно точно в центре:) И соответственно, чем мы ближе, тем меньше должны быть эволюции самолета. Нет смысла закладывать 30-градусный крен в районе ближнего привода. Во-первых, это опасно на такой высоте, во-вторых вы просто не успеете довернуть, учитывая инерцию самолета.

Наземное оборудование системы ИЛС (ILS) состоит из курсового и глиссадного радиомаяка и трех маркерных радиомаяков (в настоящее время ближний маркер устанавливается не во всех аэропортах). В некоторых аэропортах для построения маневра захода на посадку на дальнем маркерном пункте устанавливается приводная радиостанция.

При выполнении международных полетов можно встретить два варианта размещения наземного оборудования.

  • Первый вариант: курсовой радиомаяк расположен на продолжении оси ВПП и осевая линия зоны курса совпадает с осью ВПП, т. е. ее залегание соответствует посадочному углу (посадочному курсу).
  • Второй вариант: курсовой радиомаяк расположен не на оси ВПП, а в стороне-правее или левее от нее с таким расчетом, что осевая линия зоны курса проходит через средний маркерный пункт под углом 2,5-8° к линии посадки.

Курсовые маяки системы ИЛС работают в круговом варианте. В последнее время устанавливаются маяки секторного варианта: угловая ширина сектора по 70° в обе стороны от линии посадки. Основные характеристики зон курса и глиссады ИЛС приведены в разделе наземного оборудования СП-50, поскольку они совпадают с соответствующими характеристиками СП-50 при новой регулировке.

Маркерные маяки системы ИЛС работают на той же частоте (75 Мгц), что и в системе СП-50 и излучают следующие кодовые сигналы: ближний маркер - шесть точек в секунду; средний маркер - поочередно два тире и шесть точек в секунду; дальний маркер (в материалах ИКАО - внешний маркер) - два тире в секунду.

Наземное оборудование системы СП-50 размещается в аэропортах гражданской авиации по единой типовой схеме.

В результате проведенной регулировки оборудования системы СП-50 в соответствии со стандартами ИКАО, принятыми для системы ИЛС, курсовые и глиссадные радиомаяки имеют следующие технические данные.

Зона курсового радиомаяка. Осевая линия зоны курса совмещается с осью ВПП. Линейная ширина зоны на расстоянии 1350 м от точки приземления равна 150 м (в пределах от 120 до 195 м), что соответствует угловому отклонению от продольной оси ВПП не менее 2° и не более 3°.

Дальность действия маяка обеспечивает прием сигналов на расстоянии более 70 км от начала ВПП при высоте полета 1000 м в секторе шириной по 10° с каждой стороны от оси ВПП (см. 91). Для курсового маяка ИЛС дальность действия регламентирована 45 км при высоте полета 600 м.

Зона глиссадного радиомаяка. Оптимальный угол наклона глиссады планирования равен 2°40". При наличии препятствий в секторе подхода угол наклона глиссады увеличивается до 3°20" и в исключительных случаях может доходить до 4-5°. При оптимальном угле наклона глиссады снижения 2°40" самолет при снижении пролетает над дальним и ближним маркерами (при их стандартном расположении) на высотах соответственно 200 и 60 м.

Угловая ширина зоны глиссады при оптимальном угле ее наклона может быть в пределах 0,5-1°4, причем с увеличением угла наклона растет скорость снижения, а ширина зоны повышается для облегчения пилотирования самолета.

Дальность действия глиссадного радиомаяка обеспечивает прием сигналов на расстоянии не менее 18 км от него в секторах по 8® вправо и влево от линии посадки. Эти секторы, в которых обеспечивается прием сигналов, ограничены по высоте углом над горизонтом, равным 0,3 угла глиссады снижения, и углом над глиссадой, равным 0,8 угла глиссады снижения.

Наземное оборудование системы СП-50М предназначено для использования ее при директорном и автоматических заходах на посадку по нормам ИКАО 1-й категории сложности.

Стабильность залегания осевой линии курса обеспечивается более жесткими требованиями, предъявляемыми к аппаратуре.

В случаях когда длина ВПП значительно превышает оптимальную, ширина курсовой зоны устанавливается не менее 1°75" (полузона).

Все остальные параметры курсоглиссадных маяков регулируются строго в соответствии с техническими нормами ИКАО.

Системы директорного управления заходом ка посадку

В настоящее время на самолетах гражданской авиации с ГТД устанавливаются системы директорного (командного) управления заходом на посадку («Привод», «Путь»). Эти системы являются системами полуавтоматического управления самолетом при заходе на посадку.

Командным прибором в таких системах является нуль-индикатор ПСП-48 или КПП-М.

Под полуавтоматическим управлением следует понимать пилотирование самолета по командному прибору, стрелки которого при заходе на посадку с момента начале четвертого разворота и на посадочной прямой необходимо удерживать на нуле. В отличие от обычного захода по СП-50 нуль-индикатор в данном случае не информирует пилота о положении относительно равносигнальных зон курсового и глиссадного маяков, а указывает ему, какие углы крена и тангажа нужно выдерживать для точного выхода в равносигнальные зоны и следования в них.

Система директорного управления упрощает пилотирование путем преобразования навигационно-пилотажной информации о положении самолета в пространстве и формирования ее в управляющий сигнал, который индицируется на командных приборах. Отклонение командной стрелки является функцией нескольких параметров, которые в обычном заходе на посадку пилот учитывает по отдельным приборам: ПСП-48 системы СП-50, авиагоризонт, компас и вариометр. Поэтому командные стрелки находятся в центре шкалы не только тогда, когда самолет следует строго в равносигнальных зонах курса и глиссады, но и когда осуществляется правильный выход к равносигнальным зонам.

На самолеты, уже находящиеся в эксплуатации, устанавливаются упрощенные системы директорного управления, действующие на базе существующего бортового и наземного оборудования: курсовой радиоприемник КРП-Ф, глиссадный радиоприемник ГРП-2, навигационный индикатор НИ-50БМ или задатчик курса ЗК-2Б, центральная гировертикаль ЦГВ или гиродатчики (АГД, ППС). Кроме того, в комплект входит: вычислитель, блок связи с автопилотом при наличии связи с АП на самолете.

Маневр захода на посадку на самолете, оборудованном системой директорного управления, выполняется таким образом:

1. Получив разрешение на вход в зону аэропорта, оборудованного системой СП-50 или ИЛС, экипаж, действуя в соответствии с утвержденной для данного аэропорта схемой, выводит самолет к месту начала четвертого разворвта; при этом экипаж обязан:

  • а) на автомате курса НИ-50БМ установить угол карты, равный посадочному МПУ для данного направления посадки;
  • б) на задатчике ветра НИ-50БМ установить скорость ветра, равную нулю;
  • в) до включения питания на щитке М-50 убедиться, что стрелки курса и глиссады нуль-индикатора находятся в центре шкалы, в противном случае установить их по центру механическим корректором;
  • г) переключатель «СП-50 -ИЛС» поставить в положение, соответствующее системе, по которой выполняется заход;
  • д) установить на щитке управления СП-50 соответствующий канал работы курсо-глиссадных маяков;
  • е) включить питание на щитке М-50;
  • ж) включить питание на пульте управления директорной системой;
  • з) убедиться в исправной работе КРП и ГРП по отклонению стрелок нуль-индикаторов и по закрытию бленкеров на их шкалах (бленкеры закрываются после прогрева ламп приемников и при наличии сигналов наземных маяков);
  • и) во время захода на посадку на участке между третьим и четвертым разворотом при закрытых бленкерах проверить электрическую балансировку нуля курсовой планки, поворачивая ручку баланса на щитке М-50 в ту или иную сторону до прихода стрелки в центр шкалы. Проверку уточнить после выхода самолета на прямую.

2. Момент начала четвертого разворота можно определить:

  • а) с помощью АРК по КУР ДПРМ;
  • б) по азимуту и дальности угломерно-дальномерной системы «Свод»;
  • в) по команде диспетчера, наблюдающего за самолетом при помощи наземного радиолокатора;
  • г) по бортовому радиолокатору;
  • д) по отшкаливанию курсовой планки командного прибора.

3. В момент начала четвертого разворота создать сторону отклонения курсовой планки командного прибора такой крен, при котором она установится на нуль шкалы. В процессе разворота пилот должен удерживать стрелку нуль-индикатора в центре шкалы, уменьшая или увеличивая крен. Крен всегда создается в сторону отклонения стрелки.

В случае раннего начала четвертого разворота для удержания курсовой стрелки в нулевом положении первоначально потребуется создать крен 17-20°, который впоследствии необходимо уменьшить в отдельных случаях вплоть до полного вывода самолета из крена. Однако при подходе к створу ВПП курсовая стрелка командного прибора покажет необходимость создания крена, потребного для плавного вписывания в линию посадки.

При позднем начале четвертого разворота происходит изменение курса на угол, больший чем 90°, и знак крена меняется. При этом весь маневр, включая и учет угла сноса, отрабатывается системой автоматически.

При выполнении четвертого разворота нужно постоянно следить, чтобы бленкеры курса были закрыты на всех нуль-индикаторах.

4. После выполнения четвертого разворота и входа в равносигнальную зону курса следует продолжать полет без снижения, удерживая кренами директорную стрелку командного прибора в центре шкалы. При

этом необходимо следить за стрелкой глиссады, которая после выполнения четвертого разворота будет отклонена вверх. Бленкеры глиссады должны быть закрыты.

Как только стрелка командного прибора приблизится к белому кружку, немедленно начать снижение, удерживая директорную стрелку глиссады в центре черного кружка.

5. По высоте пролета ДПРМ определить возможность продолжения снижения по глиссаде: если над ДПРМ при нахождении стрелки глиссады в пределах белого кружка высота полета будет равна или превышать установленную для данного аэропорта, то можно продолжать дальнейшее снижение по глиссаде; если же при правильном выдерживании глиссады самолет достиг установленной высоты пролета ДПРМ и не последовало сигналов фактического ее пролета, то немедленно прекратить снижение по глиссаде и в дальнейшем после пролета ДПРМ снижение производить по правилам, установленным для системы ОСП.

6. После пролета ДПРМ удерживать директорные стрелки командного нуль-индикатора в нулевом положении, не допуская при этом снижения вне видимости земли ниже установленного для данного аэропорта минимума погоды.

При обнаружении земли (посадочных огней) необходимо перейти на визуальный полет и произвести посадку.

Ошибки в установке курса на автомате НИ-50БМ, превышающие в сумме с углом сноса 15°, вообще не позволят осуществить заход на посадку по системе директорного управления. Во избежание этого перед началом четвертого разворота штурман должен вновь убедиться в правильности установки «Угла карты» на автомате курса НИ-50БМ й в правильности работы курсовой системы. При показаниях магнитного курса, значительно больших фактического курса на посадочной прямой, самолет будет отклоняться вправо от оси равносигнальной зоны курсового радиомаяка, а при заниженных показаниях - влево. Для обеспечения хорошей точности работы системы на посадочной прямой при больших углах сноса штурман должен обеспечить работу курсовой системы с высокой точностью; ошибка не должна превышать ±2°.

Кроме того, точность выхода самолета на ось ВПП и следования вдоль нее зависит также от точности залегания зоны курсового радиомаяка и установки на нуль курсовой стрелки поворотом кнопки на щитке управления СП-50.

:: Текущая]

Посадка по ILS


Курсо-глиссадная система (ILS)

Садиться визуально при хорошей видимости легко и приятно, но, к сожалению, погода не всегда это позволяет. Авиаторы начали искать решение проблемы.

Уже в 1929 началось тестирование радионавигационной системы, позволяющей заходить на посадку при помощи приборов вне видимости взлетно-посадочной полосы, а в 1941 году использование такой системы было разрешено американской авиационной администрацией в шести аэродромах страны.

Первая посадка по приборам пассажирского лайнера выполняющего регулярный рейс была произведена 26 января 1938 года. Boeing 747, выполняющий рейс из Вашингтона в Питтсбург совершил посадку в пургу, используя для этого только курсо-глиссадную систему.

Курсо-глиссадная система (КГС) предназначена для посадки в условиях отсутствия видимости полосы. По-английски эта система называется Instrument Landing System, сокращенно ILS. ILS состоит из двух основных независимых частей: курсовых (localizer) и глиссадных (glideslope) радиомаяков.


Курсовой радиомаяк, как следует из названия, позволяет контролировать положение самолета по курсу. Курсовой радиомаяк находится с противоположного торца полосы и состоит из двух направленных передатчиков, ориентированных вдоль полосы под незначительно различающимися углами, передающими сигнал, смодулированный на разных частотах. По середине полосы интенсивность обоих сигналов максимальная, в то время как слева и справа от полосы интенсивность одного из передатчиков выше. Принимающая аппаратура сравнивает оба сигнала и исходя из их интенсивности вычисляет, на сколько левее или правее от осевой линии находится самолет.


Курсовой посадочный радиомаяк сокращенно обозначают LOC в Америке, или LLZ в Европе. Несущая частота обычно находится в пределах от 108.000 МГц до 111.975 МГц. Современные курсовые маяки обычно являются высоконаправленными. Более старые радиомаяки таковыми не являлись, и их сигналы можно было поймать на обратном курсе. Это позволяло сделать неточный заход на противоположный конец полосы, если он не был оборудован собственной ILS. Большим минусом такого захода является то, что прибор будет показывать отклонение от курса в противоположном направлении, что сильно усложняет заход.

Глиссадный радиомаяк (glideslope или glidepath, сокращенно GP) работает аналогичным образом. Он устанавливается сбоку от полосы в зоне приземления:


Несущая частота глиссадного радиомаяка обычно находится в пределах от 329.15 до 335 МГц. К счастью, пилоту не надо вводить отдельно частоту глиссадного маяка, прибор настраивается на нее автоматически.

Угол наклона глиссады (УНГ) может меняться в зависимости от окружающей местности. Стандартный угол наклона глиссады за рубежом равен трем градусам. В России стандартным считается угол 2 градуса 40 минут.

Помимо основных компонент, в ILS может входить ряд дополнительных. Такими компонентами являются маркерные радиомаяки. Они представляют собой радиомаяки, излучающие узконаправленный сигнал вверх на частоте 75 МГц. Когда самолет проходит над таким радиомаяком, аппаратура принимает его и зажигает соответствующий индикатор. Пилот, глядя на индикатор, должен принять соответствующее маяку решение.

Маркерные маяки бывают трех видов:

1. Дальний маркерный маяк (Outer Marker, OM). Как правило расположен на удалении 7.2 км от порога ВПП, но это расстояние может изменяться. При проходе над маяком в кабине загорается и мигает буква O. В этот момент пилот должен принять решение о заходе по ILS.

2. Ближний маркерный маяк (Middle Marker, MM). Расположен примерно в километре от порога ВПП, в кабине обозначен индикатором с буквой M. При заходе по ILS категории I, если в этот момент нет видимости земли, пилот должен начать уход на второй круг.

3. Внутренний маркерный маяк (Inner Marker, IM). Расположен обычно примерно в 30 метрах от порога ВПП, при проходе загорается бука I. Во время захода по ILS категории II, если в момент прохода маяка нет видимости земли, следует немедленно начать уход на второй круг.

На практике не все маркерные маяки могут быть установлены одновременно. Внутренний маяк очень часто отсутствует. Часто маркерные маяки совмещают с приводными радиостанциями.

Совместно с ILS может работать всенаправленный дальномерный радиомаяк, или РМД (по- английски DME, Distance Measuring Equipment). Если DME установлен, аппаратура DME в кабине самолета показывает удаление до торца полосы. Иногда DME может использоваться вместо маркерных радиомаяков. В таких случаях на схемах посадки может быть написано что для посадки по ILS использование DME является обязательным.

ILS делятся на категории, которые определяют минимум погоды, при которых ими можно пользоваться. Существуют три категории ILS, обозначающиеся римскими цифрами. Третья категория в свою очередь делится на три подтипа, обозначающиеся латинскими буквами. В таблице ниже перечислены особенности всех категория ILS:

Категории ILS предъявляют требования не только к оборудованию ILS, но и к оборудованию самолета. Например, при использовании категории I в самолете достаточно иметь обычный барометрический высотомер, а при использовании более высоких категорий обязательным становится наличии радиовысотомера.

Специальное оборудование ведет мониторинг правильности работы ILS. В случае обнаружения неисправностей ILS должна автоматически выключаться. Чем выше категория ILS, тем меньше времени должно занимать обнаружение неисправностей и отключение ILS. Так, если ILS категории I должно отключаться в течении 10 секунд, то для категории III время отключения составляет менее двух секунд.

Пилоту, собирающемуся садиться по ILS в первую очередь следует ознакомиться со схемой посадки. Типичная схема посадки по ILS имеет следующий вид:

Подробно схемы объясняются в отдельной статье, а сейчас нас интересует только частота ILS:


Из этой схемы видно что частота ILS равна 110.70, а так же показана частота DME, расположение маркеров и схема ухода на второй круг.

Для работы с ILS используется тот же комплект оборудования, который работает с VOR. На панели приборов приемники обычно маркируются надписями NAV 1 и NAV 2, в случае если установлен второй комплект. Для ввода частоты в приемник используется двойная круглая ручка. Большая ее часть используется для ввода целых, меньшая дробных долей частоты. На рисунке ниже показана типичная панель управления радионавигационными приборами:

Приемники подписаны красным цветом. Это простейший вид приемников, который позволяет ввести только одну частоту. Более сложные системы позволяют ввести сразу две частоты, и быстро переключаться между ними. Одна частота является неактивной (STAND BY), ее изменяет ручка задатчика частоты. Вторая частота называется активной (ACTIVE), это та частота, на которую настроен приемник в данный момент.

На рисунке выше показан пример приемника с двумя задатчиками частоты. Пользоваться им очень просто: при помощи круглого задатчика надо ввести требуемую частоту, а затем сделать ее активной при помощи переключателя. При наведении мыши на колесико задатчика курсор мыши меняет форму. Если он выглядит как маленькая стрелка, то при нажатии на мышь сменятся десятые доли. Если стрелка большая, то изменяться будет целая часть числа.

В кабине так же должен быть прибор, показывающий, как далеко от курса и глиссады в данный момент находится самолет. Этот прибор обычно называется NAV 1, или VOR 1. Как мы уже выяснили, в самолете может иметься второй такой прибор. В самолете Cessna 172 их два:

Прибор состоит из подвижной шкалы, напоминающей шкалу компаса, круглой ручки задатчика OBS, (для работы с ILS не используется), стрелки индикатора направления TOFROM, транспаранта GS и двух планок, вертикальной и горизонтальной. Вертикальная планка показывает отклонение от курса, горизонтальная отклонение от глиссады. Транспарант GS исчезает после приема сигнала глиссадного радиомаяка.

Введем частоту ILS в приемник NAV 1 и понаблюдаем за прибором. Предположим, самолет находится точно на глиссаде и на курсе:


Как видно из рисунка, в этом случае планки NAV1 находятся точно по центру. Это идеальное положение, к которому всегда надо стремиться. На практике очень легко отклониться в какую-либо сторону. Если отклониться самолет будет находиться ниже глиссады, вертикальная планка отклонится вверх:


В этом случае надо потянуть штурвал на себя (или прибавить оборотов двигателю) и вернуться на глиссаду. Теперь предположим что наш самолет находится точно на глиссаде, но отклонился от курса влево:


На этот раз планка отклонилась вправо, а это значит что надо довернуть на право и выйти на курс. Правило при полете по ILS такое же, как при полете по VOR: надо лететь в ту сторону, в которую показывает планка. Куда отклонился планка, туда и надо направлять самолет. Как правило отклоняться будут обе планки одновременно:


Здесь самолет отклонился вверх по глиссаде и вправо по курсу. Пилоту нужно опуститься пониже чтобы выйти на глиссаду и повернуть правее для возврата на курс.

В самолетах, оборудованными триммером руля высоты, проще всего стриммировать самолет на снижение таким образом, чтобы он сам оставался на глиссаде. Сначала это будет не просто, но с приходом опыта все начнет получаться. После того как самолет правильно стриммирован на снижение, останется только слегка подправлять его и следить за курсовой планкой.

Для коррекции вертикальной скорости можно пользоваться ручкой управления двигателями: увеличение оборотов двигателей замедлит снижение, уменьшение наоборот, увеличит скорость снижения.

В сложных метеоусловиях надо не забывать контролировать положение самолета в пространстве при помощи авиагоризонта, и всегда следить за скоростью. Скорость, с которой надо заходить на посадку, написана в РЛЭ самолета.

Теперь, все что осталось для успешного использования ILS это приступить к ее освоению на практике. Начать можно с симулятора VOR/ILS, расположенного по адресу http://www.luizmonteiro.com/Learning_VOR_Sim.htm . Если переключить его в режим LOC Glide Slope (ILS), то он начнет моделировать работу ILS. Перемещая мышкой самолет в горизонтальной и вертикальной плоскостях, можно освоиться с поведением курсовой и глиссадной планок.


©2007-2014, Виртуальная авиакомпания X-Airways
[ :: Текущая]
glissade - «скольжение») - вертикальная проекция траектории полёта летательного аппарата, по которой он снижается непосредственно перед посадкой. В результате полёта по глиссаде летательный аппарат попадает в зону приземления на взлётно-посадочной полосе .

В парапланеризме базовой глиссадой называется прямая траектория непосредственно перед посадкой.

Угол наклона глиссады - угол между плоскостью глиссады и горизонтальной плоскостью. Угол наклона глиссады является одной из важных характеристик взлётно-посадочной полосы аэродрома. Для современных гражданских аэродромов обычно находится в пределах 2-4,5°. На величину угла наклона глиссады может влиять наличие препятствий в зоне аэродрома.

В Советском Союзе типовым значением угла наклона глиссады было принято 2°40′. Международная организация гражданской авиации рекомендует угол наклона глиссады в 3° (Приложение 10 к Чикагской конвенции 1944г. Том 1, Рекомендация 3.1.5.1.2.1).

См. также

Источники

  • Большой энциклопедический словарь : [А − Я] / Гл. ред. А. М. Прохоров . - 1-е изд. - М .: Большая Российская энциклопедия , 1991. - ISBN 5-85270-160-2 ; 2-е изд., перераб. и доп. - М .: Большая Российская энциклопедия; СПб. : Норинт, 1997. - С. 1408. - ISBN 5-7711-0004-8 .

Напишите отзыв о статье "Глиссада"

Ссылки

Отрывок, характеризующий Глиссада

Денисов сморщился еще больше.
– Сквег"но, – проговорил он, бросая кошелек с несколькими золотыми. – Г`остов, сочти, голубчик, сколько там осталось, да сунь кошелек под подушку, – сказал он и вышел к вахмистру.
Ростов взял деньги и, машинально, откладывая и ровняя кучками старые и новые золотые, стал считать их.
– А! Телянин! Здог"ово! Вздули меня вчег"а! – послышался голос Денисова из другой комнаты.
– У кого? У Быкова, у крысы?… Я знал, – сказал другой тоненький голос, и вслед за тем в комнату вошел поручик Телянин, маленький офицер того же эскадрона.
Ростов кинул под подушку кошелек и пожал протянутую ему маленькую влажную руку. Телянин был перед походом за что то переведен из гвардии. Он держал себя очень хорошо в полку; но его не любили, и в особенности Ростов не мог ни преодолеть, ни скрывать своего беспричинного отвращения к этому офицеру.
– Ну, что, молодой кавалерист, как вам мой Грачик служит? – спросил он. (Грачик была верховая лошадь, подъездок, проданная Теляниным Ростову.)
Поручик никогда не смотрел в глаза человеку, с кем говорил; глаза его постоянно перебегали с одного предмета на другой.
– Я видел, вы нынче проехали…
– Да ничего, конь добрый, – отвечал Ростов, несмотря на то, что лошадь эта, купленная им за 700 рублей, не стоила и половины этой цены. – Припадать стала на левую переднюю… – прибавил он. – Треснуло копыто! Это ничего. Я вас научу, покажу, заклепку какую положить. glissade - букв. «скольжение»; производное от glisser - «скользить») - траектория полёта летательного аппарата (самолёта, вертолёта, планера), по которой он снижается, в том числе - непосредственно перед посадкой. Стандартная глиссада начинается на высоте 400 метров и заканчивается на высоте 15 метров. [ ]

Угол наклона глиссады - угол между плоскостью глиссады и горизонтальной плоскостью. В Советском Союзе типовым значением угла наклона глиссады было принято 2°40′. Международная организация гражданской авиации рекомендует угол наклона глиссады в 3° . Угол наклона глиссады контролируется либо радиотехническими средствами (глиссадный радиомаяк), либо пилотом визуально по передней кромке взлётно-посадочной полосы , либо по величине вертикальной скорости снижения летательного аппарата. На величину угла наклона глиссады может влиять наличие препятствий в зоне аэродрома. Градиент снижения не должен превышать 5°. Полёт по глиссаде может осуществляться в автоматическом, полуавтоматическом и ручном режимах управления. В результате полёта по глиссаде летательный аппарат попадает в зону приземления на взлётно-посадочной полосе.

Некоторые летательные аппараты совершают полёт по ломанной глиссаде. Многоразовые космические летательные аппараты «Спейс шаттл » и «Буран» совершали полёт по глиссаде, первый участок которой имел угол наклона 19°.

Глиссада в математической модели - это параллельный перенос вектора вдоль геодезической кривой, при котором его угол с геодезической остаётся неизменным. Скорость снижения - «ухода» вниз - измеряется радиусом кривизны геодезической.

В парапланеризме базовой глиссадой называется прямая траектория непосредственно перед посадкой.

См. также

Примечания

Литература

  • Глиссада // Газлифт - Гоголево. - М. : Советская энциклопедия, 1971. - (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969-1978, т. 6).
  • Глиссада // Большой энциклопедический словарь / Гл. ред. А. М. Прохоров . - 1-е изд. - М. : Большая российская энциклопедия , 1991. - ISBN 5-85270-160-2 .
  • Крысин, Леонид Петрович . Глиссада // Толковый словарь иноязычных слов: Ок. 25000 слов и словосочетаний. - М. : Русский язык, 1998. - 846 с. - (Библиотека словарей русского языка). - ISBN 5-200-02517-6 .